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Abstract

Quantum computing promises solutions to classically difficult and new-found prob-
lems through controlling the subtleties of quantum computing. The Quantum
Approximate Optimisation Algorithm (QAOA) is a recently proposed quantum
algorithm designed to tackle difficult combinatorial optimisation problems utilis-
ing both quantum and classical computation[31]. The hybrid nature, generality
and typically low gate-depth make it a strong candidate for near-term implemen-
tation in quantum computing. Finding the practical limits of the algorithm is
currently an open problem. Until now, no tools to facilitate the design and vali-
dation of probabilistic quantum optimisation algorithms such as the QAOA on a
non-trivial scale exist.
Graph similarity is a long standing classically difficult problem withstanding decades
of research from academia and industry. Determining the maximal edge overlap
between all possible node label permutations is an NP-Complete task which has
faced little research from classical computer science and provides an apt measure of
graph similarity. We introduce a novel quantum optimisation simulation package
facilitating investigation of all constituent components of the QAOA from desktop
to cluster scale using graph similarity as an example.
Our simulation provides class-leading flexibility and performance. We investi-
gate eight classical optimisation methods each at six levels of decomposition; the
most exhaustive study to date. Moreover a novel encoding for permutation based
problems such as graph similarity through edge overlap to the QAOA allows for
significant quantum memory savings at the cost of additional operations. This
compromise extends into the classical portion of the algorithm as the inclusion of
infeasible solutions creates a particularly difficult cost-function landscape.
We present performance analysis of our simulation and of the quantum algorithm
itself setting a precedent for investigating and validating numerous other difficult
problems to the QAOA as we move towards realising practical quantum compu-
tation.
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3.2.2 Defining Ĉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.3 Defining B̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.4 Permutation Mapping . . . . . . . . . . . . . . . . . . . . . 31

3.2.5 Test-Case Generation . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Simulation Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.1 Simulation Components . . . . . . . . . . . . . . . . . . . . 33
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CHAPTER 1

Introduction

Seeking use from digital computers is an invariable goal in computer science. The
computers we currently know stem from mathematics recruiting the laws of physics
to realise our definition of computing. Graphs are widely used to represent real-
world phenomenon in manner suitable for computation. Determining whether one
graph is identical or similar to another when node correspondence is unknown is a
long standing difficulty. Approximation of such measures prove useful in a myriad
of real-world contexts. Quantum computing defines computation as a physical
process linking computation to the underpinning physics stronger than previously
encountered. Historically intractable problems can be explored in new ways as
increasingly sophisticated quantum algorithms are formulated. Combinatorial op-
timisation is amongst the most general and practically applicable computational
paradigms. Based on the formulation of quantum annealing the recently formu-
lated Quantum Approximate Optimisation Algorithm (QAOA) [31] approaches
NP-Complete combinatorial optimisation problems on discrete gate-based quan-
tum computers. We explore the long-standing difficult problem of graph simi-
larity via the QAOA using a problem encoding scheme novel to this algorithm.
Furthermore, empirical validation is the only powerful method known to evaluate
heuristic based or very probabilistic algorithms such as the QAOA. We present
Qolab (Quantum Optimisation Laboratory), a software package designed to pro-
vide scalable efficient simulation of the QAOA from desktop to cluster scale for
a generalised problem encodings and variations on the QAOA itself. A familiar-
ity with the fundamentals of quantum computing is essential to understanding
quantum algorithms. This familiarity is difficult to acquire without a background
in quantum-physics. To aid with this we additional present a brief introduction
to the field providing the minimal required knowledge to understand the QAOA.
As physical implementations of gate-based quantum computers grow in scale, fo-
cus is shifting towards practical quantum computation with tangible real-world
applications.
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1.1 Computer Science Thus Far

Arguably, computing begins with the abacus. Over the past millennium humanity
has discovered increasingly sophisticated methods to implement the model of com-
puting. Such developments are governed by physics. The most radical discoveries
in the field invariably drive innovation in the era following; Galileo formulated
simple machines establishing a relationship between mathematics and theoretical
and experimental physics. Newton’s laws of motion gave birth to the machine
age, similarly the discoveries of electromagnetism drove the development of the
information age. We are yet to realise a fitting use for quantum mechanics. Quan-
tum computing is the strongest candidate thus far and has garnered ferocious
support from private industry and public institutions across the globe. Quantum
computing represents a natural development that radically diverges from classical
computer science.

1.2 Combinatorial Optimisation

A combinatorial optimisation problem consists of finding some optimal object from
a finite set of possible choices. Specifically we define combinatorial optimisation
problems with respect to the following components.

Definition 1.2.1. A combinatorial optimisation is specified precisely by the fol-
lowing components

• A specific problem type I. We must be able to efficiently determine if an
arbitrary problem belongs to the set we are concerned with.

• For each valid problem instance p ∈ I a solution validation function S : p→
P(U) which determines if a given input x is a feasible solution to p. The
computational resources required to store both x and p must be bounded by
some polynomial. This is required to efficiently verify an arbitrary solution
y as a valid solution to p.

• An objective function C(x) : I ×U → Z which maps a feasible solution to a
non-negative integer value indicating the quality of the solution. The highest
value of C(x) in the set of feasible solutions indicates the optimal solution
for a given problem instance

Given a problem instance p of type I we aim to find an x such that

C(x) = max(S(p)) (1.2.1)
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This leads to a clean definition of NP-optimisation problems.

Definition 1.2.2. An NP optimisation problem NP is a combinatorial optimisa-
tion problem where the set of feasible solutions S(x,NP ) cannot be exhausted in
polynomial time.

We further define a bounded optimisation problem NPO-PB

Definition 1.2.3. A bounded NP optimisation problem NPO − PB is an NP
optimisation problem with the additional constraint that the resources required to
represent C(x)∀x ∈ S(NPO − PB) must be bounded by some polynomial.

Given the intractability of NP and NPO − PB optimisation problems ap-
proximation algorithms are tolerated relaxing the problem to find an optimal ap-
proximate solution. This general problem description captures a number of useful
problems in computer science such as planning, scheduling, protein folding, vertex
colouring and the travelling salesman problem [34]. Finding approximate solutions
of superior accuracy for such problems is an open area of research in classical com-
puter science.

1.3 Graph Similarity

Graphs are well generalised mathematical structure. A graph encodes relations
between entities and as such graphs can represent a vast number of real-world
problems. The features of faces, topology of the Internet, road-networks, decision-
flow, computer programs, cosmological bodies and any other number of natural and
unnatural phenomenon can be expressed through this marvellous data-structure.
For completeness we define the graph.

Definition 1.3.1. A graph G(v, e) is a collections of vertices v and a collection of
(v, v′) pairs termed edges e which may be directed or un-directed [25].

The rich history of graph theory provides many metrics on graphs such as
shortest path-length. While many of these measures are trivial or at least tractable
to compute they typically concern themselves with the internal structure of a
particular graph. Finding information about the overall structure of a graph is
a much more laborious task. Graph isomorphism is a quintessential structural
problem when comparing graphs; are two given graphs alike? This problem has
no P algorithm and showing NP-completeness is a long-standing open problem
[34] and so it occupies a unique complexity class often termed graph isomorphism
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complete [86]. Difficulty arises from the factorial number of mappings between the
features of two unlabelled graphs with unknown node correspondence. Relaxing
the isomorphism problem provides numerous measures of similarity between graphs
which are known to be NP-Complete [34] and have been given a large amount of
academic and industrial attention.
We specifically investigate a measure of whole graph similarity which we defined
as

Definition 1.3.2. Whole Graph Similarity: Given two graphs G1(v1, e1) and
G2(v2, e2) with possibly different numbers of vertices and edges, find an algorithm
which returns a measure of similarity S|S ∈ [0, 1]. Furthermore:

1. S(G1, G1) = 1

2. S(G1, G2) = S(G2, G1)

This method is simple to understand and allows for concise error determina-
tions when comparing a brute-force optimal and computed approximate solution.
Further, we define and present the measure of edge overlap (EO) as a whole graph
similarity measure adhering to Definition 1.3.2 Consider two directed, un-weighted
graphs G1 and G2 with no known vertex labelling. For each permutation σ of po-
tential node labels between G1 and G2 we provide a penalty of one for every edge
(or non-edge) which differs between the two graphs. This penalty score is then
normalised by the maximum number of edges possible. The maximum possible
score is bound by the number of edges possible which is v2 for a directed graph,
v(v − 1) for an un-directed graph with self-edges and v(v−1)

2
for an un-directed

graph without self-edges. Normalisation yields an edge-difference value ed which
we take as our similarity value. Importantly, graphs of differing numbers of vertex
can be compared by adding degenerate, unconnected nodes to the smaller graph.
The computational difficulty of finding this value arises from the factorial number
of possible node-labelling permutations.
For example, consider the two graphs depicted in figure 1.1. The maximum num-
ber of identical edges is 14 counting the identical edges present and identical edges
which are missing (they only differ in two edges). Thus the graph similarity for
these two is 1− 2

42
= 1− 1

8
= 0.875.

1.3.1 Graph Similarity as Combinatorial Optimisation

We map graph-similarity to a bounded NP-optimisation problem as follows.
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Figure 1.1: Two example unlabelled graphs (G1 and G2)

• The set of problem instances I is the set of all un-weighted graphs.

• Given a pair of graphs G1, G2 the set of feasible solutions is the set of map-
pings between the vertices of G2 to G1. The number of candidate mappings
grows O(V 2) hence growing non-polynomially. A solution can be validated
by checking that each vertex is mapped and that the mapping is bijective.

• The objective function is the edge-overlap between graphs G1, G2 under a
candidate mapping which is bound by V 2.

Algorithm 1 Classical brute-force algorithm to find Maximal Edge Overlap

1: G1 ←< E1 >
2: G2 ←< E2 >
3: Best← 0
4: for each Permutation X of 1, 2...V do
5: C(x)← V 2

6: for i← 0 to V do
7: for j ← 0 to V do
8: if G1[i, j]! = G2[X[i], X[j]] then C(x)← C(x)− 1
9: end if

10: end for
11: end for
12: if C(x) >Best then
13: Best ← C(x)
14: end if
15: end for
16: return Best

Many classically difficult problems can be simple to define but remain difficult due
to the explosive growth of the solution space. In the case of graph-similarity the
number of candidate solutions grow O(v!).
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This exact formulation of graph-similarity demands a brute-force algorithm to
find an exact solution presented in Algorithm 1.3.1 as it is feasible for only a single
candidate to be optimal (consider two isomorphic graphs for example).

1.4 The Quantum Approximate Optimisation Algorithm

The Quantum Approximate Optimisation Algorithm (QAOA) is a hybrid quantum-
classical algorithm designed to approximately solve NP-Complete combinatorial
optimisation problems [29]. The QAOA is unique among other notable gate-based
quantum computing algorithms for two. The gate depth required for useful com-
putation is low and the approximate nature of the algorithm make it suitable for
near-term, noisy quantum computers. Furthermore, the general formulation of
the algorithm inspires other similar algorithms which allow for more sophisticated
problem encoding. The QAOA and derivative algorithms are likely candidates for
near-term practical use. Finding the practical limits of this algorithm remains an
open problem.

1.4.1 The Quantum Adiabatic Algorithm (QAA)

Farhi et al. [32] note the possibility of exploiting the exponential number of items
a qubit register can represent and formulate the quantum adiabatic algorithm
(QAA). The QAA is founded in by the quantum adiabatic theorem where a quan-
tum systems evolves according to the Schröidgner equation

i
d

dt
|ψ(t)〉 = Ĥ(t) |ψ(t)〉 (1.4.1)

The QAA utilises a quantum register of n qubits. Two system Hamiltonians are
prepared B̂ and Ĉ. B̂ often termed the driver Hamiltonian is an easily prepared
maximal energy state. Ĉ often termed the problem Hamiltonian encodes the
values of all possible solutions. Importantly, Ĉ encodes the problem solution as
the highest energy-state of our quantum system. The Hamiltonian governs the
evolution path of our system according to

Ĥ(t) = (1− t

T
)B̂ +

t

T
(Ĉ)) (1.4.2)

such that Ĥ(0) = B̂ and Ĥ(T ) = Ĉ. Adiabatic evolution ensures that if B̂ begins
in a maximum-energy state, as t→ T the system will remain in a maximal energy
state. Measurement at time T should yield a near-optimal solution with high-
probability [32].
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1.4.2 Moving to the Quantum Approximate Optimisation Algo-
rithm

The Quantum Approximate Optimisation Algorithm (QAOA) [31] builds on the
foundation of the QAA by noting that adiabatic evolution is impossible to imple-
ment exactly. A Suzuki-Trotter decomposition of the evolution into discrete incre-
ments is much simpler however and can be implemented in a gate-based quantum
computer [85].
Farhi et al. define combinatorial optimisation problems with regards to maximum
satisfiability. The corresponding cost function is defined as

c(x) =
m∑
i=1

ci(x) (1.4.3)

ci(x) check if the i-th clause is satisfied by the input bit-string. Since this problem is
NP-Complete, any other NP-complete problem can be mapped to this formulation
in polynomial time. The solution can be encoded as a diagonal Hamiltonian Ĉ
where the i-th eigenvalue contains the cost-function value of i as a n-length bit-
string. This diagonal operator is defined by the action of Ĉ on the computational
basis states, just as any other quantum-computing gate.

ÛC(γ) = e−iγĈ (1.4.4)

where γ is a real-valued parameter which is restricted to the interval [0, 2π). Im-
portantly, the QAOA operates on all bit-strings of length n without regard for
feasibility. This is not an issue for problems like MAX-SAT where all bit-strings
are valid but cause issue for problem with more nuanced encodings.
An operator B̂ defines how candidate bit-strings are considered. The canonical
formulation is given by

B̂ =
n∑
i=1

σxi (1.4.5)

Where σix is the Pauli-X operator, the quantum equivalent of the NOT gate. This
Hamiltonian allows all candidate bit-strings to be considered without restriction.
Similar to ÛC we define ÛB as

ÛB(β) = e−iβB̂ (1.4.6)

The resulting quantum state for a given set of parameters is by∣∣∣~γ, ~β〉 = ÛB(βp)ÛC(γp)...ÛB(β1)ÛC(γ1) |ψ〉 (1.4.7)
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Where |s〉 is a trivial equal-super-position of n qubits. In practice repeated sam-
pling of a single QAOA-iteration functions as the output of our system. This

output is defined analytically as the expectation value of
∣∣∣~γ, ~β〉, Fp(~γ, ~β) and is

defined by the equation

Fp(~γ, ~β) =
〈
~γ, ~β

∣∣∣ Ĉ ∣∣∣~γ, ~β〉 (1.4.8)

For reference the expectation value of a quantum state |ψ〉 is computed as a dot-
product of |ψ〉†, Ĉ and |ψ〉 and is effectively a weighted sum of the probability
to measure a given bit-string multiplied by its corresponding cost-function value.
Typically, the amount of decomposition is small and is expressed as the number
p (≈ 2). Finding a solution to the original combinatorial optimisation problem
is now accomplished by a parameter search on the 2p transformation parameters,
which can be performed classically.
The QAOA is therefore a generalised frame-work application to a wide range of
combinatorial optimisation problems and a strong candidate for near-term prac-
tical use. We present a high-level circuit representation of the QAOA in Figure
1.2.

1.4.3 Simulating the QAOA

Classical simulation of an arbitrary quantum process is a well-established diffi-
culty [33]. Additionally, the exponential and anti-intuitive behaviour of qubits
make designing quantum algorithms a generally difficult task. The current de-
mand for exacting bit-level design for quantum algorithms makes experimentation
with general quantum algorithms such as the QAOA exceedingly difficult. Current
quantum computing simulations either lose performance by offering generality or
lose generality by offering extreme performance for a single task. This motivates
the development of a simulation package targeted at the general QAOA frame-
work intending to provide a compromise between the two extremes. By providing
an exacting simulation of the QAOA we make the best use of high-performance
computing(HPC) tools allowing for powerful empirical validation. Experimental
analysis is essential to understand the QAOA since closed-form correctness analysis
is infeasible for all but the most trivial, well-conditioned cases [38].
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P = Decomposition

Measure
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…

…

…
…

…

𝑈𝑐(𝛾1) 𝑈𝑐(𝛾𝑃)
𝑈𝐵(𝛽1) 𝑈𝐵(𝛽𝑃)

Quantum Computer

Classical Computer

Ԧ𝛾, Ԧ𝛽 = 𝑈𝐵 𝛽𝑝 𝑈𝐶 𝛾𝑝 … 𝑈𝐵 𝛽1 𝑈𝐶 𝛾1 ⋅ |𝜓⟩Figure 1.2: Circuit diagram of the QAOA framework
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1.5 Unifying Hypothesis

Given the long-standing combinatorial difficulty in comparing whole-graph struc-
ture, the advent of near-term quantum computing hardware and a ferocious ap-
petite for exploring the use of such machines it seems appropriate to investigate
quantum combinatorial optimisation with regards to graph similarity.
We propose that for a fixed number of samples the QAOA will generate more cor-
rect solutions to näıve random-sampling for determining the maximal edge-overlap
between two directed, un-weighted graphs. We expect improved performance for
undirected graphs and that the number of quantum evaluations required will scale
favourably establishing the QAOA as a valid approach to graph similarity.
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CHAPTER 2

Literature Review

We present a discussion of literature surrounding graph similarity measures, a rapid
introduction to gate-based quantum computing, a survey of current investigation
into the QAOA and finally a discussion on computing the matrix exponential; a
cornerstone of simulating the QAOA.

2.1 Graph Similarity

2.1.1 Applications of Graph Similarity Measures

The generality of graph-theory generates many important real-world contexts
where a measure of similarity between graphs is valuable. Mapping an individual’s
social network has remained of interest since the original publication of the ’small-
world’ phenomenon which in itself provides a good model for understanding the
relationship between information sources [50]. Computing the structural neigh-
bourhoods of vertices and edges provides methods for indexing the world wide
web allowing a level of access to information unparalleled in all of human history
[14]. Strug [82] formulates a machine learning method to evaluate the quality of a
design through graph similarity between components. In the field of data-mining
classifying graphs based on similar features is applicable to many problem settings
such as social network mining, drug design and anomaly detection in program-
execution [40]. Facial recognition and object tracking is an obvious application for
graph similarity if features can be mapped onto graph structures [88]. Heymans
and Singh [44] frame the determination of evolutionary pathways in terms of graph
similarity computed between the metabolic pathways of varying organisms. The
problem of chemical compound matching has been a common benchmark prob-
lem prompting strong commercial and academic backing for a number of years
[40], [71], [41]. Just as graphs are able to express a vast number of phenomenon
the measures constructed to compare them are just as varied, finding structural
similarities between graphs is a long-standing intensely valuable endeavour.
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2.1.2 Classical Graph Similarity

The precise methods used to approximate graph similarity are as varied as the
measures defined. However there are two general types of similarity measures
commonly employed; whole-graph similarity and vertex-wise similarity [56].

Vertex-Wise Similarity

Measures of similarity formulated per vertex maintain a multitude of specific for-
mulations. However, they all follow the same basic paradigm; vertices are consid-
ered similar if their neighbourhoods are similar. Such measures are far removed
from the definition of graph isomorphism and seldom penalise differences between
graphs. Lades et al. [57] presents an object recognition scheme extending classical
artificial neural-networks to a more dynamic architecture testing their method by
formulating facial-recognition as an elastic graph matching problem. Fortunately
in the field of machine vision a degree of error is tolerated as the main design
criterion for such systems is efficient calculation of average-case approximations
[57]. Nevertheless, the search for more accurate and robust systems yields the
extremely fruitful field of machine learning and machine vision we see today.
Analysis of the network structure of the Internet provides a large example of graph
similarity measures. Kleinberg [55] proposes the extraction of improving Internet
search queries based on the structure of hyper-links between pages. The neigh-
bourhood of vertices are examined to determine high-quality pages to return as
results to user queries. The ranking of pages is defined with regards to ’hub’ and
’authority’ pages. A ’hub’ is a page which references many high-quality authori-
ties and an ’authority’ pages is one which is referenced by many high-quality hubs
[55]. Clearly, there exists a large overlap in links between any pair of hub and
authority pages sharing a similar neighbourhood; in this sense ranking such pages
is a graph similarity problem. Kleinberg [55] further formulates this computation
as an eigenvalue decomposition on the quality values of candidate pages. This ap-
proach was later extended by Brin and Page [14] in the design of the Google search
engine. Restriction of scale to a local neighbourhood at any given vertex provides
tractability. The success of the vertex-wise description of graph similarity is tes-
tament to the power of structural information present in graphs driving Google
to forefront fields in computer science such as machine learning [80] and quan-
tum computing [11], [12], [54]. Zager and Verghese [89] use vertex-wise similarity
to compute whole graph matching. While results are promising and significantly
better than random assignment the Hungarian algorithm employed to perform
matching produces imperfect results. This preliminary work highlights the diffi-
cultly of the more general problem of graph matching. Later, Kolias et al. [56]
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extend vertex-similarity calculations to a graph-global problem presenting scale-
able parallel algorithms applicable to graphs two orders of magnitude larger than
previously feasible on the order of millions of vertices.

Whole Graph Similarity

Whole graph similarity aims to compute how similar to given graphs are in their
entirety as a relaxation of the graph-isomorphism problem. The maximum com-
mon sub-graph problem [34] is a very general metric which captures a natural sense
of global similarity. The goal is to find the largest collection of matching vertices
and edges present in two graphs. Determining the maximum common sub-graph
is intuitively applicable to the analysis of chemical compounds. Hattori et al [41]
show this method to be effective to not only determine compound similarity in
of itself but to discover and classify systemic aspects of biology. Atoms make a
natural analogy to vertices as bonds between them do as edges. The maximum
common sub-graph is a particularly applicable measure to biological and chemical
sciences as many larger compounds are built from well known constituent cliques.
As such the techniques employed by Hattori et al. [41] make heavy use of heuris-
tics to overcome the computational complexity involved with determining common
structure. The computation of the maximum common sub-graph is in general NP-
hard [34] but in the context of chemical compounds this is not entirely accurate
[41]. The natural limits on atomic bonding limit complexity somewhat; carbon
atoms are only permitted to maintain a maximum of four bonds for instance [41].
The use of heuristics significantly increases computation efficiency but degrades
solution quality appropriately.
Strug [82] constructs a similar measure of maximum sub-graph comparison but
in a generalised context of computer aided design. The problem is framed with
regards to hierarchical graphs creating a natural set of useful sub-graphs to be
compared thus reducing the overall number of graph comparisons required. Strug
[82] employs machine learning inspired methods of kernel matching to approxi-
mate solutions degrading solution quality in a similar trade-off for computational
performance as other methods.
Papadimitriou et al. [68] apply maximum sub-graph matching to identify graph-
dissimilarity. By tracking snapshots of the Internet described as a graph one can
identify anomalies through the differences between them. Three types of anoma-
lies are searched for: missing connected sub-graphs; missing random vertices, and
connectivity changes. Five methods to compute whole graph similarity are con-
sidered.
Vertex ranking computes the correlation between two sets of vertices given a pre-
computed quality score for each and is the least successful method evaluated [68].
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Vertex similarity, is related to methods discussed previously in section 2.1.2. This
method performs admirably but is not superior to many other methods.
Vertex and edge-overlap computes similarity between two general graphs. Simply
stated, this method considers two graphs similar if they share a large number of
edges and vertices. This method utilises edit distance as a measure of similarity
capturing a natural intuition for similarity [68]. A similar edit-distance measure
is employed by Zheng et al. [90] for searching graph databases. Various filters are
employed to reduce the computational complexity of chemical database searches
by returning graphs with an edit distance below a carefully chosen bound. This
method outperforms contemporary solutions by a significant margin [90]. With
regards to anomaly detection however, vertex overlap fails to detect large missing
connected sub-graphs. [68].
Sequence similarity considers graphs to be similar if they share a large number of
smaller sub-graphs. Papadimitriou et al. [68] utilise their own method of shin-
gling which converts a graph to a linear sequence of tokens. This method is poorly
suited to detecting anomalies between graphs but is better suited to structures
which are inherently linear. The final method considered by Papadimitriou et al.
[68] computes a signature of each graph and uses the hamming distance between
the two as a measure of similarity. Signature based similarity shows the best per-
formance in detecting anomalies.
Yongkoo et al. [40] classify graphs by sub-graph matching based on selective appli-
cations of exact graph isomorphism tests. Computational efficiency is derived from
the intelligent choice of features to be tested. Features are chosen by building a
topology where frequent sub-graphs are given an identification tag which can then
be queried quickly. Results show significant improvements in accuracy and speed
in classifying anticancer behaviour over leading implementations [40]. However,
solutions are still no more than 86% accurate.
Computing measures of graph-wide similarity remains to be a difficult problem ap-
proximated by many algorithmic methods. The widespread use of graph similarity
measures in a broad-spectrum of problem contexts promote consistent attention
from academic and industrial institutions. Despite decades of research no tractable
exact algorithm has been found and all known solutions make significant sacrifice
to solution quality or scope. This long accepted difficulty makes graph similarity
a prime candidate for investigation by quantum computing.

2.2 Quantum Computing

Quantum mechanics stands among the most notable scientific achievements of the
20th century describing phenomena unlike anything previously encountered. Rem-
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iniscent of how electromagnetism spawned the realisation of the digital computer,
practical applications of quantum physics promise exotic new technologies. Quan-
tum computing is a major frontier in this regard. We present an introduction to
fundamental concepts and historic developments in the field suitable for readers
without a strong background in quantum physics.

2.2.1 Bits vs. Qubits

The fundamental difference between classical and quantum computing lies in the
physical paradigm used to represent atomic data. In classical computing all data
is represented in a register of bits each maintaining the value of zero or one. The
exact construction of such a register varies, the fundamental principle however,
remains constant. Feynman [33] makes the elegant observation that the simu-
lation of quantum phenomenon and quantum systems is extremely difficult to
perform classically. The natural extension to this observation is whether we can
use these inherently complicated quantum phenomenon to perform useful com-
putation. Deutsch [23] later defines the quantum Turing machine by refining the
fundamental Church-Turing hypothesis from an abstract construction to the phys-
ically related Church-Turing principle. Re-framing the definition of computation
with explicit regard to the laws of nature results in a whole new paradigm of
computing machines which base their principles on quantum phenomenon. This
discovery has driven a quest extending over three decades to construct such ma-
chines and to realise the upper echelons of computation permitted by the physical
world.
The fundamental building block of quantum computing is the logical abstraction
of any two-state quantum system known as a qubit [66]. Mathematically we use
dirac [26] notation to represent the state of a qubit; as an example analogous to
classical bits a qubit can exist in the |0〉 or |1〉 state. One drastic difference is that
a qubit can exist in any linear combination of these states called superposition

|ψ〉 = α |0〉+ β |1〉 , (2.2.1)

where α and β are any complex numbers such that |α|2 + |β|2 = 1. The states |0〉
and |1〉 specify a computational basis but we could just as easily specify any other
pair of basis states as long as they are orthonormal.
To quickly grasp the potential for computational power qubits afford first consider
the unit sphere. In classical computing, each bit is permitted to only occupy one
of the poles, each corresponding to either a zero or one. In contrast a qubit can oc-
cupy any combination of the two states |0〉 and |1〉 and can thus occupy any point
on surface of the sphere. This representation is known as the bloch sphere and is
a very useful tool to represent the state of a qubit [66]. One might believe that
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this allows a single qubit to store infinite information as there are infinitely many
unique points on a sphere however this is not exactly the case. This superposition
of basis states is only present during a quantum computation, when a measurement
is made a qubit will collapse onto one of the two basis states. More specifically, a
measurement will collapse a qubit into either basis state with probabilities |α|2 or
|β|2 respectively. This fact captures the core difficulty in the design of quantum
over classical algorithms; we can only measure a qubit once. Classical computing
is built upon setting and examining the state of bits explicitly and freely. The
techniques demanded in quantum computing are more nuanced.
While a measured qubit will only yield a single bit of information, nature is ex-
cellent at keeping track of all the quantum information stored by a qubit in su-
perposition. The goal of quantum computing then is to extract as much of this
information as possible.

2.2.2 Logic Gates and Quantum Circuits

A qubit register is simply a collection of multiple qubits just as a classical register
is simply a collection of bits. If we have n classical bits then together there are
2n possible values that register can represent but only one is represented at any
given time. This is already powerful but the quantum mechanical nature of qubits
allow for vastly more power; a register of n qubits in superposition can represent
2n states simultaneously.
Analogous to classical circuits, a quantum circuit is a series of quantum logic gates
operating on some initial quantum register state. Typically, gates are defined
with regards to their actions on qubits which can be described in matrix form.
Incredibly, the only restriction required for a quantum logic gate is that it is a
unitary operator.

Definition 2.2.1. A unitary operator (Û) when multiplied by its conjugate trans-
pose (Û †) results in the identity matrix (1) [66].

For example, the single-qubit NOT gate swaps the amplitudes of a qubit. One
can describe the effects of this gate using the following matrix

X =

[
0 1
1 0

]
. (2.2.2)

We see the effect of this operation on the qubit |ψ〉 = α |0〉+ β |1〉.

X

[
α
β

]
=

[
β
α

]
. (2.2.3)

There are a number of possible sets of quantum logic gates which define universal
computation, we present one such set.
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Phase Shift

The phase shift gate realises an arbitrary rotation in the computational basis. This
gate has no real classical analogy as it operates exclusively on superposition states.
Importantly, this gate leaves the probability amplitudes of a qubit untouched. It
is described by

Rφ =

[
1 0
0 eiφ

]
. (2.2.4)

Hadamard Gate

The Hadamard gate acts on a single qubit to produce an equal-superposition of
two basis states. One may intuitively think of the Hadamard gate as transforming
a qubit ’halfway’ between two basis states [66]. Successive applications of the
Hadamard gate on each in a register of n-qubits |0..0〉 will result in an equal
superposition between the entire computational basis represented by n-qubits. It
is described by the matrix

H =
1√
2

[
1 1
1 −1

]
. (2.2.5)

Control Not (CNOT)

The control-NOT (CNOT) gate acts on two qubits known as the control |x〉 and
target |y〉 qubits. The CNOT gate performs a logical NOT on the target qubit
if and only if the control qubit is in the state |1〉 but leaves the control qubit
unchanged. One can see that this is a quantum analogue to the classical XOR-
gate. One can express the effect of this gate on two states as |ψ, φ〉 → |φ, φ⊕ ψ〉
where ⊕ is addition-modulo 2 (the definition of the classical XOR gate). The
CNOT gate is described by the following matrix

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (2.2.6)

Measurement

Measurement is not strictly a quantum-logic-gate as it permanently alters the
state of a qubit (it is not a unitary operation). However, it is included in quantum
circuit diagrams as it is necessary for useful computation. One may choose to think
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of qubit-measurement as a gate with a single qubit input and single classical bit
output. Furthermore, if qubits are entangled with each other, the measurement of
a single qubit will reveal the state of other qubits simultaneously [66].

2.2.3 Notable Algorithms

In the three decades following the original definition of a gate-based quantum
computer a vast number of surprising discoveries have been made and the physical
implementation of useful universal quantum computers impend on the near future.
While we do not present a summary of the entire field here, we summarise a
selection of the most well-known quantum algorithms.

The Deutsch-Jozsa Algorithm

Deutsch and Jozsa [24] define the first quantum algorithm to find a solution more
efficiently than any classical computer. While not directly practical this algorithm
provides inspiration for more sophisticated algorithms, serving an excellent intro-
duction to quantum algorithms. Suppose we have a function f which accepts a
single n-bit number from the range [0, 2n − 1] as input and produces either zero
or one as an output. Further, this function is guaranteed to either be constant
meaning it returns the same value for all inputs or balanced where exactly half of
all inputs produce zero and the other half produce one. Using classical computers
a deterministic algorithm requires 2n

2
+ 1 queries to reach an answer. The original

Deutsch-Jozsa algorithm [24] requires only two function evaluations to compute an
answer and is deterministic. Later, Cleve et al. [21] improve the Deutsche-Jozsa
algorithm to only require a single query yet remain deterministic. This is clearly
a vast improvement over a deterministic classical computer and still a sizeable
improvement over stochastic classical algorithms [66]. Nielsen and Chuang [66]
provide an excellent summary of this algorithm and its physical implementation.

Shor’s Algorithm for Integer Factorisation

We begin by defining the integer factorisation problem which is equivalent to the
discrete-logarithm and order-finding problems.

Definition 2.2.2. Given a positive composite integer N , what prime numbers
when multiplied together produce N? [66]

Integer factorisation underpins public-key encryption systems widely used to-
day. The exponential growth in classical complexity involved with factorising large
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primes have provided security for decades [15]. Peter Shor [78] proposes a quantum
algorithm to solve this problem with exponential speed-up over classical comput-
ers. The asymptotic run-time of Shor’s algorithm grows polynomially with the
length of the integer to be factored. Computing the quantum Fourier transform, a
quantum analogue to the well established discrete Fourier transform, is core to this
algorithm and is inspired by the Detsch-Jozsa algorithm [66]. Shor’s algorithm is
not deterministic and may require a polynomial number of repeat computations
to produce a correct solution with high-probability [77]. Shor’s algorithm has thus
produced the burgeoning field of quantum cryptanalysis. Cleve et al. [21] present
a method to break the well-known RSA cryptography scheme explicitly.
Quantum cryptography is becoming a more prominent field spawning a large vol-
ume of research and commercial development. In the near-term, quantum key
distribution schemes face rapid progress and immanent implementation [15]. In
addition to security concerns, quantum computers pose a threat to relatively novel
concepts such as crypto-currencies prompting careful threat analysis [2]. Shor’s
algorithm to this day remains arguably the most infamous quantum algorithm.

Grover’s Search

Unstructured search is a very general problem which is defined simply. Given a
finite set of possibilities, find options which satisfy a particular condition. In most
practical contexts there exists structure in the search space which is exploited to
design efficient algorithms; consider a binary search on a sorted list for example.
Grover [35] presents a quantum algorithm for unstructured search with time com-
plexity O(

√
N). Bennett et al. [8] later show the lower limit of time complexity

for this task using a quantum computer is Ω(
√
N).

Grover’s search algorithm starts by preparing a superposition of n-qubits repre-
senting 2n = N possible items. In this state, some number M of the N possible
items will correspond to satisfactory elements and the rest will not. The vector
sum over all desirable elements will produce a basis vector |α〉 and a sum over
all other unsatisfactory elements produce an orthogonal basis vector |β〉. In this
new basis, a state with a high amplitude in the |α〉 axis corresponds to a high
probability of measuring a satisfactory item. A subroutine termed a ’Grover itera-
tion’ is performs a rotation in the |α〉 , |β〉 basis in the |α〉 direction and is applied
O(
√
N) times. Specifically the number of iterations is approximately π

√
N/4 when

searching for a single item [36]. After this a measurement is made revealing with
high-probability an item satisfying our query [66]. The exact number of iterations
is dependent on each problem instance growing polynomially and optimally [36].
The optimal nature of Grover’s algorithm is a surprising result motivating further
research into quantum computing. Exploiting the exponential scale of quantum
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information remains a central goal as quantum algorithms are sought to solve
previously intractable classical problems.

2.2.4 Quantum Supremacy

Quantum supremacy describes the potential ability for quantum computers to out-
perform classical computers for some problems. This problem fundamental to the
field of quantum computing is difficult to demonstrate for a number of reasons.
The performance of a quantum computer must be proven to be superior to any
classical computer requiring rigorous proofs of lower-bound complexity for both
quantum and classical formulations of a problem. Boixo et al. [11] suggest the
construction of particular problems simulating quantum phenomenon to aid in
this endeavour. Relaxing the definition of quantum supremacy permit the use of
benchmarking and practical performance as measures of supremacy inspired by the
evaluation of heuristic-based algorithms in classical computing. Formal supremacy
is an important milestone in the field, however useful quantum computation is the
true goal of the field.

2.2.5 Classical Quantum Simulation

The obvious approach to establish supremacy is to simulate quantum circuits of
increasing size. The point at which simulation becomes intractable reveals a lower
limit on formal quantum supremacy. Such a bound is difficult to show analytically
resulting in the some of the largest single-task computations in history.
The recently developed high-performance distributed quantum simulator qHiP-
STER [81] allows for simulation of quantum circuits up to 40-qubits in scale.
Smelyanskiy et al. [81] find memory to be the limiting factor of simulation postu-
lating that simulations greater than 49 qubits are in-feasible until 2024.
Boixo et al. [11] build on the work of Smelyanskiy [81] by simulating 42-qubit
circuits using 70 terabytes of memory. Further Boixo et al. [11] formalise the task
to demonstrate supremacy based on building very dense, partially randomised
circuits acting upon a grid of qubits. This introduces both size and depth as simu-
lation bounds. Importantly, such a measure is shown to be efficiently measured on
a hypothetical physical quantum processor. The scheme is based on multiple fast
evaluations of a circuit revealing a single sampled output. Over a vast number of
samples an accurate distribution is achieved.
Häner and Steiger [46] simulate a 45-qubit system. Deriving improvements in
memory and communication overheads by kernel optimisation and a scheduling
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algorithm ordering the processing of sub-circuits. This simulation, the largest of
its time, required 8,192 nodes and 0.5 petabytes of memory.
Pednault et al. [69] provide methods to simulate beyond the previously conceived
49-qubit limit using only three terabytes of memory simulating 56-qubit circuits.
The scheme employed by Pednault et al. [69] reformulates circuit simulation as
tensor operations cutting down on memory requirements significantly and allows
the use of more generalised tensor mathematics. Similar to the scheduling concept
used by Häner and Steiger [46], the computation of gates which entangle qubits
(introducing an exponential factor) is deferred.
Boixo et al. [12] further improve their original scheme [11] formulating circuit
execution as an un-directed graph. A variable elimination scheme is developed
reducing average memory requirements. This scheme is especially powerful for
smaller circuits allowing workstation simulation of a larger scale than previously
possible.
Chen et al. [17] apply more aggressive gate partitioning producing exponentially
more independent circuits to simulate, allowing better use of distributed resources.
Further, Chen et al. [17] estimate the computational cost of simulating a 72-qubit
circuit, deeming it feasible for a computer identical to that used by Pednault et al
[69].
Li et al. [58] compute both sampling and full simulation tasks for circuits of 49-
qubits at 39 and 55-depths respectively. A gate partitioning scheme in addition
to dynamic programming methods are used to construct an efficient ordering of
sub-tasks reducing memory overheads. 131,072 nodes and nearly one petabyte of
memory are used.
Chen et al. [17] extend the variable elimination work of Boixo et al. [12] and
apply it in a distributed manner. Circuits of varying sizes and depths are analysed
factoring estimated real-world noise with the intent to derive a lower-bound on
hardware accuracy. Again, 131,072 nodes and around one petabyte of memory are
used.
Markov et al. [60] refine the benchmarks defined by Boixo et al. [12] further in-
creasing classical simulation complexity. The use of public cloud resources allow
Markov et al. [60] to associate a monetary cost with such simulations generating
further motivation for implementing such a scheme in quantum hardware.

Quantum computing brings focus to two frontiers; the fundamentals of computing
as we gain an understanding of qubits, and cutting-edge classical simulation. The
few algorithms already discovered bring large implications to the world of com-
puter science encouraging research into finding quantum advantage in increasingly
challenging and diverse classical problems. We introduce one such algorithm in
the following section designed to make use of both quantum and classical machines
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in an effort to realise practical quantum computation sooner.

2.3 The Quantum Approximate Optimisation Algorithm (QAOA)

In section 1.4 we introduce the algorithm itself, here we discuss prior investigation
and experimentation.

2.3.1 The QAOA and Quantum Supremacy

The requirement that a quantum supreme algorithm must exhibit performance
superior to any classical algorithm is difficult to formulate. The ultimate goal to
implement a quantum supreme algorithm on physical hardware remains an open
yet vital problem. Farhi et al. [29] present an analysis of the QAOA applied to the
E3LIN2 problem, a linear equation optimisation intending to demonstrate prov-
able supremacy. Taking p = 1 Farhi et al. [29] provide an analytic formulation

to show their result. The QAOA produces answers satisfying 1
2

+ Ω(D
−3
4 ) of the

required clauses.
Spurred by this claim, Barak et al. [7] present a superior classical algorithm for
the same problem satisfying 1

2
+ Ω( 1√

D
) fraction of the required clauses.

However, the formulation of the QAOA examined by Farhi et al. [29] is a coarse
approximation of the QAA using only a single trotterisation (p = 1). Fahri et
al. [29] suggest a number of possible improvements requiring further analysis such
as increasing p and introducing variables for each clause to be optimised. Such
improvements are difficult to formulate analytically and hence experimental moti-
vation for such analysis is required to justify such work.
For these reasons Farhi and Harrow [30] propose the QAOA may still demonstrate
quantum supremacy. The QAOA may demonstrate quantum supremacy in two
ways.
Farhi and Harrow [30] argue the inherent quantum nature of the QAOA itself can-
not be replicated classically. More specifically if there did exist such an algorithm,
Farhi and Harrow [30] propose the complexity hierarchy would collapse. Secondly,
physical quantum computers will allow the QAOA to be run on problem instances
prohibitively large for classical computation and hence may generate superior so-
lutions in these instances. This provides evidence for the QAOA to be among the
first algorithms implemented in quantum hardware despite classical competition
to find superior algorithms.
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2.3.2 Optimisation of the Classical Component

The hybrid nature of the QAOA naturally leads to two frontiers of development
and research, the quantum and classical components. A large proportion of efforts
understandably focus on the quantum component an understanding of the classical
component is essential. Guerreschi and Smelyanskiy [37] investigate three classical
optimisation methods for hybrid quantum algorithms with experimental analysis
on the QAOA. Gradient-free and quasi-Newton methods are investigated in an
experimental manner. The Nelder-Mead algorithm for gradient-free optimisation
is an appropriate method for the general case of a small value of p while the
quasi-Newton method using finite derivative methods provides superior results
with a matching increase in implementation complexity [37]. The function space
the QAOA generates is typically very difficult to form a gradient in, hence the
increase in computational complexity. The work of Guerreschi and Smelyanskiy
[37] lays a solid foundation for experimental simulation of the QAOA with regards
to complexity and performance.

2.3.3 Extensions of the QAOA

Augmentation and extension of the QAOA is possible in addition to direct optimi-
sation. Instead of solving optimisation problems directly Wecker et al. [85] modify
the QAOA to find a quantum state which seeks a maximal overlap between the
objective function and the ground energy state of the given instance. This ap-
proach is applied to the MAX 2-SAT problem. This change in formulation should
lead to more accurate results but introduces more complexity into the classical
optimisation. The general approach Wecker et al. [85] employ uses classical ma-
chine learning techniques to train the algorithm with known difficult instances of
the MAX 2-SAT problem. The training yields an optimisation schedule describing
how the algorithm explores the state space of possible parameter-values and is
subsequently tested on a another set of problem instances. This machine learning
approach solves instances of MAX 2-SAT and MAX 3-SAT faster than the well
known annealing scheme CFLLS [22], demonstrating the largest improvement in
the hardest instances. This experimental approach provides concrete data suggest-
ing this modified QAOA is also suitable for near-term implementation. However,
a generalisation of this approach and the specific learning methods employed are
not discussed in detail. Additionally, performance comparison to the original for-
mulation of the QAOA is not presented.

Rather than adjusting the main objective of the QAOA, Hadfield et al. [39] ex-
tend the QAOA to a more general framework termed the Quantum Alternating
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Operator Ansatz (Referred to as QAOA in the original paper out of respect but
here as the QAOAn to avoid confusion). The main modification considers general
parameterised families of unitaries over the specific family of fixed local Hamiltoni-
ans. Loosely speaking this allows the QAOAn to operate on registers describing a
wider range of quantum systems which in turn allows the encoding of more varied
problems. This is accomplished by varying the formulation of the mixing opera-
tor ÛB to restrict considered bit-strings to valid solutions only. This decomposes
the mixing operator into a number of operations which makes the algorithm more
powerful but more difficult to implement. Hadfield [38] describes a large number of
problem specific formulations of the QAOAn including very well known hard clas-
sical problems such as the travelling salesman and job scheduling to demonstrate
the potential impact of this reformulation of the QAOA. Unlike Farhi and Harrow’s
[30] original approach to demonstrating quantum supremacy analytically, Hadfield
et al. [39] propose an empirical approach similar to how heuristic algorithms are
often analysed. Their reasoning cites the difficulty often found when proving the
supremacy of heuristic algorithms directly versus the easier task of bench-marking
an algorithm over a suitable well-known set of problem instances. This approach
is similar to that of Wecker et al. [85]. Disappointingly no experimental data is
presented, however this work provides a solid foundation for future investigation
and publications of the QAOAn due to the large number of problem specifications
provided.
Mash and Wang [61] propose a more tightly describe alteration to the QAOA for
NPO PB problems based on the observation that the mixing operator describes
a continuous time quantum walk on the quantum register. By imposing restric-
tions on this operator bit-strings are partitioned into feasible and in-feasible sets
allowing for greater performance.

2.4 Computing the Matrix Exponential

Simulating the QAOA requires solving the time-dependent Schrödinger equation

|Ψ(t)〉 = e−iHt |Ψ(0)〉 , (2.4.1)

as a central component of the algorithm. Efficient and accurate numerical approx-
imate of Equation 2.4.1 requires efficient and accurate computation of the matrix
exponential for large, sparse and complex-valued matrices. We define the matrix
exponential for completeness.

Definition 2.4.1. exp(A) ≡ eA =
∑∞

n=0
An

n!
= I + A+ A2

2!
+ A3

3!
+ ...,

Matrix exponential computation is a highly investigated problem with over 35
years of investigation. Despite these efforts there is no single superior method,
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rather an array of methods each with their own intricacies, benefits and short-
comings. Moler and Van Loan [62] present a now canonical review of 19 candidate
methods. Their work remains so influential Moler and Van Loan [63] present an
updated version 35 years later. Careful algorithm selection and implementation
is key to guarantee both performance and numerical accuracy. Such choices are
highlighted by implementation for HPC users.
We note that for the diagonal case, computing the matrix exponential involves ex-
ponentiation each element of the matrix [62]. Through eigenvalue decomposition
one can diagonalise most matrices reducing the exponential to this simpler case in
addition to two matrix-matrix multiplications. However, such a method requires
the use of sophisticated eigenvalue solvers, a major computational effort in of itself
which may be slower than many other methods in the general case.
Computing the Taylor series directly results in a slow-convergence and low-accuracy
in the general case. Using a Padé approximation provides better accuracy with
less terms, however again, näıve application of series expansion results in poor
general-case performance. As such more sophisticated methods provide superior
performance and are necessary for practical use.

Scaling and Squaring

The most popular method available for dense matrices is scaling and squaring.
This method relies on a property unique to the matrix exponential

eA = (eA/m)m. (2.4.2)

Selecting m carefully as the smallest power of two such that ‖A‖/m ≤ 1 allows for
accurate and efficient use of Taylor or Padé approximants. Scaling and Squaring
is among the most widely used methods due to strong accuracy and elegance. Al-
Mohy and Higham [3] champion this error presenting highly in-depth error analysis
and precise algorithms for computing optimal m for IEEE precision arithmetic.
Further Higham and Tisseur [45] present an algorithm for estimating the 1-norm
of arbitrary matrices, a key component of the aforementioned matrix exponential
algorithm [3]. Scaling and squaring is widely implemented in many commercial
packages such as MATLAB, Scipy, Mathematica and Expokit [79]. Scaling and
squaring is best suited for dense matrix exponentiation and is thus poorly suited
for distributed implementation due to the use of matrix-matrix products.

2.4.1 Computing eA · v

In many cases including our own, the computation of the action is the matrix
exponential on a vector is our task. This slightly different problem allows for
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alternative methods to be used with potentially less computational overhead.

Scaling and Squaring

Higham and Al-Mohy [4] present a method based on their algorithm [3] for comput-
ing the action of the matrix exponential. Now their algorithm determines through
one-norm estimation the optimal scaling value to minimise the number matrix-
vector multiplications required. Aside from the estimation of the one-norm this
algorithm is currently untested in a distributed memory implementation.

Krylov Subspace

The most popular method for large, sparse matrix exponentiation is the Krylov
subspace method [63]. This method approximates the matrix exponential onto
a smaller Kylov subspace which then allow for dense matrix methods to be ap-
plies efficiently. Re-using the constructed subspace allows successive value of t to
be computed at low-cost and as such is considered the canonical sparse-matrix
method. Mathamatica’s MatrixExp[A,v], Expokit [79] and SlepC/PetSc [6], [43]
implement the Krylov subspace method. Furthermore, SlepC/PetSc offer the only
commercially available distributed memory implementation of the matrix expo-
nential.

Chebyshev Approximation

The Chebyshev approximation method spawns from quantum chemistry where
a series approximation of the matrix exponential is computed by the Chebyshev
polynomial forming each step [28, 84, 83, 64]. Post-multiplying the Chebyshev
series with our vector v allows for direct computation of etA · v without ever com-
puting a full exponential matrix. Bessel J zero functions form the coefficients of
the expansion which allow for fast and accurate convergence. Chebyshev approxi-
mation requires either eigenvalue scaling or use of the dense scaling and squaring
method. However estimates of the eigenvalues do not effect accuracy greatly, but
effects the number of iterations required for convergence [49]. The Chebyshev
method is appealing for HPC applications has only matrix-vector or vector-vector
operations are required when eigenvalue scaling is used. This allows for trivial
memory parallelisation with minimal communication making this method a strong
candidate growing support in HPC applications. Furthermore Auckenthaler et al.
demonstrate that the Chebyshev method is superior to the scaling and squaring
method [5] while Bergmaschi et al. [9] suggest the Chebyshev method is superior
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to the Krylov subspace method. Despite practical performance, very few packages
implement this method: Expokit [79] implements Chebyshev approximation for
dense matrices, and pyCTQW [49] a Python package built upon PetSc/SlepC to
simulate continuous time quantum walks.
Computing the action of the matrix exponential is critical to efficient and accurate
simulation of the QAOA at desktop to cluster-scale.

2.5 Quantum Computing Applied to Graph Similarity Prob-

lems

We are not the first to consider applying quantum computing to classically dif-
ficult graph theoretic problems. Lucas [59] provides a vast number of mappings
for classical NP-Complete problems to the Ising model of computing. The Ising
model of computation can in turn be mapped onto a quantum annealer through
the quantum adiabatic algorithm (QAA)[32]. Hen and Young [42] map the graph
isomorphism problem to a quantum annealer with experimental results. Hen and
Young analyse experimental implementation supporting the conjecture that quan-
tum annealers can discriminate between non-isomorphic graphs [42]. Furthermore
they suggest that hardware and simulation improvements will better validate their
claims.

Graph similarity is an openly difficult problem to compute classically despite the
vast practical use it demonstrates. As the field of quantum computing matures his-
torically intractable problems are explored with often surprising results expanding
the scope of what feasible computing permits. We also provide a brief introduction
to quantum computing assuming no prior knowledge of quantum physics in addi-
tion to a few historic quantum algorithms. We present the Quantum Approximate
Optimisation Algorithm as a general method to approach hard combinatorial opti-
misation problems; optimisation and extensions to the algorithm are an open area
of research. Seeking the limits of computation will always be integral to the field of
computer science, an endeavour extending into the realm of quantum computing.
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CHAPTER 3

Methods

3.1 The Quantum Approximate Optimisation Algorithm (QAOA)

The Quantum Approximate Optimisation Algorithm (QAOA) stands unique among
many other quantum algorithms as it is in essence, a Monte-Carlo Algorithm. The
solution quality various for a fixed amount of execution but has in practice shown
excellent performance inspiring academic and industrial investigation [67]. To en-
code a problem into the QAOA we require the following.

• A problem Hamiltonian Ĉ which implements the cost function of our candi-
date problem

• A mixing Hamiltonian B̂ which defines which bit-strings are permitted for
evaluation by the algorithm.

• A suitable amount of decomposition (p value)

• An initial state generation scheme

A QAOA iteration is defined as p applications of successive ÛC and ÛB unitary
operators. At each application of ÛC , ÛB a corresponding corrective parameter
γi, βi is applied to approximate an annealing scheme while dropping the adiabatic
requirement of the QAA. Repeated sampling generates an approximate expectation
value which is fed into a parameter optimisation scheme to select new (~γ, ~β). This
process repeats until a termination criteria is met or the quantum compute time
is exhausted.
Hadfield [38] and Marsh and Wang [61] introduce restrictions upon the mixing
operator restricting the algorithm to feasible solutions at a cost of higher gate
depth. Marsh and Wang [61] reverse the order of applying ÛC and ÛB in order to
account for the non-trivial maximal energy state introduced by applying mixing
restrictions. We provide a novel mapping of permutation based problems such as
graph similarity via edge-overlap to the QAOA.
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3.1.1 General Problem Encoding

Problem operators are encoded into annealing schemes such as the QAA through
the Ising spin-glass model of computation [74] which allows the definition of prob-
lem Hamiltonians of the following form.

Ĥ = µ
∑
i

hiσi +
∑
i,j

σiσj. (3.1.1)

Problems are encoded using pseudo-boolean functions [13] and permit a wide va-
riety of difficult problem definition [59]. The first term defines the logic for setting
a particular spin x : {−1, 1}. In the gate-based QAOA each ’spin’ corresponds to
a qubit encoding a binary variable x : {0, 1}.

3.2 Graph Similarity via QAOA

3.2.1 A Canonical Mapping

The standard method to map permutation based problem use unary encodings of
n2 qubits. To illustrate, consider for an arbitrary pair of graphs each consisting of
V vertices a V 2 string of qubits

[x1,1x1,2 . . . x1,v][x2,1x2,2 . . . x2,v] . . . [xv,1xv,2 . . . xv,v], (3.2.1)

where a binary variable xi,j represents vertex j in G2 mapping to vertex i in G1.
Under such a scheme the vast majority of the 2V

2
bit-strings are not feasible since

n! << 2n
2
. Such an encoding quickly becomes intractable for both simulation and

physical quantum hardware where the current state of the art is around 72 qubits
[60] permitting graphs of less than eight vertices. Hadfield [38] provides a QAOA
mapping for the travelling salesman and other permutation problems but requires
mixing constraints to enforce legal candidate solutions. A unary encoding of graph
similarity through edge overlap suffers from the same issue.

3.2.2 Defining Ĉ

We propse a novel compact encoding requiring O(dlog2(V !)e) qubits prepared in
O(V 3) operations. We define our problem Hamiltonian as

Ĉ = A
∑
σ∈V !

V∑
i=1

V∑
j=1

V∑
u=1

V∑
v=1

(d1(i, j)d2(u, v))(xiσ(u)xjσ(v)). (3.2.2)
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This provides us with the edge overlap for all V ! permuted labels of u, v ∈ G2. Our
problem operator Ĉ |ψ〉 = C(x) |ψ〉 that is the application of our cost function to
all bit-strings x. Our diagonal problem operator ÛC becomes

ÛC(γ) |ψ〉 = e−iγc(x) |ψ〉 . (3.2.3)

Welch et al. [87] builds on the work of Childs [19] providing a method to imple-

ment e−iγĈ efficiently without the use of additional ancillary qubits where each
element of the diagonal Ĉ is itself efficiently computable. We provide a graphical
representation of Ĉ in Figure 3.1

3.2.3 Defining B̂

We define a canonical mixing operator [31]

B̂ =
n∑
i=1

σxi , (3.2.4)

where σx is the Pauli-x matrix, the quantum equivalent of the NOT gate. Our
mixing operator ÛB becomes

ÛB(β) |ψ〉 = e−iβ
∑n

i=1 σ
x
i |ψ〉 = e−iβB̂ |ψ〉 . (3.2.5)

We provide a graphical representation of B̂ in Figure 3.2.
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3.2.4 Permutation Mapping

Abrams and Lloyd [1] provide a method to encode a superposition of n elements
using O(n3) operations. Chiew et al. [18] provide a full circuit encoding edge over-
lap values using O(n2log2(n)) operations and O(nlog(n)) qubits allowing efficient
bit-string mapping over the range [0, n!] to edge-overlap values. To index all such
values in ÛC we require dlog2(V !)e qubits (termed q) since for all n > 2, n! > 2n.
We trivially map the remaining ’tail’ values not included in the range 2q to zero.
Typically the initial state of a QAOA iteration is the poorest possible solution.
In our case this difficult to determine thus we use a superposition of all q qubits.
This compact representation suffers from these ’tail’ values. We plot the first 2000
terms in Figure 3.3. These degenerate values are frustrating from an optimisa-
tion standpoint since the QAOA will always start from an equal probability of
measuring any bit-string. We cannot apply per-qubit mixing restrictions. The
proportion of the tail reveals a uniform distribution (Kolmogorov-Smirnov test
[53] for uniform distribution, p-value 1.46e − 08). In Figure 3.3, a DB-clustering
[53] of points confirm this observation further, labelling all points as noise. For
interest we present a table of initial data points and present a series expansion of
this phenomena in Appendix B.

3.2.5 Test-Case Generation

Graphs are generated using the standard Erdös-Rényi method; we randomly assign
each edge with 50% probability. Instead of testing two random graphs, we deform
an initial graph in order to create difficult test-cases where graphs are quite similar.
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This allows us to test for overall correctness for each individual trial and over
multiple trials. We consider the following deformations

• Isomorphism: The original graph is compared to itself. The first element of
the problem Hamiltonian is guaranteed to be zero.

• Vertical Flipping: The original graph is mirrored in the vertical axis. This
generates very dissimilar graphs with minimal effort shown in Figure 3.4

• Edge Addition: v non-existent edges are added at random

• Edge Removal: v existent edges are removed at random

• Edge Addition and Removal: v edges are added and removed randomly

3.3 Simulation Design

Qolab (Quantum Optimisation Laboratory) is a flexible simulation package for
the QAOA and related algorithms from desktop to cluster scale implemented in
C. Our package allows for a single interface to both desktop and cluster-based code
at the highest level of abstraction possible. The user is required to implement only
the cost function used to define ÛC and any walk masks applied to ÛB if using
the modified QAOA described by Marsh and Wang [61]. We present an extensive
description in Appendix C. Exacting implementation targets maximal single node
and desktop performance. Multiple processors are utilised by distributing the
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state-space.
Matrix operations are handled using Intel’s Math Kernel Library [48] and we store
matrices in compressed column form. [27].

3.3.1 Simulation Components

Direct state-vector simluation avoids a large amount of overhead present in con-
temporary gate-based simulations such as IBM’s Qiskit Alpha [47]. We capture
the high-level structure of our QAOA simulation in Algorithm 2 and a similar
description of a walk-restrictive QAOA in Appendix D. The following sections
describe the implementation and computational complexity of each component.
For clarity we make the following definitions:

• V - The number of vertices in candidate graphs

• q - A number of qubits. For graph similarity this is 2dlog2(V !)e

• n - A number of classical items

• p - The amount of trotterisation applied to the QAOA

• P - The number of processors present in our cluster

• nP - The size of the state-vector maintained by each processor

• |ψ〉 - The state-vector used by the QAOA
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Algorithm 2 Qolab Overview

1: procedure QAOA Core(numQubits, P, optimisationMethod, C(x))
2: ÛC ←genUC(C(x))
3: ÛB ←genUB(numQubits)

4: ~γ, ~β ←initialParameters()
5: while terminateTest() do
6: |ψ〉 ←initialState
7: for i = 0 to p do
8: |ψ〉 ← ÛC(γi) |ψ〉
9: |ψ〉 ← ÛB(βi) |ψ〉

10: end for
11: Fp ←Measure(S)

12: ~γ, ~β ← updateParameters(FP )
13: end while
14: end procedure
15: Report()

3.4 Generating ÛC

3.4.1 Permutation Generation

The power of the QAOA derives performance from the ability to process an ex-
ponential number of inputs to our cost function simultaneously. This requires
the generation of all q! bit-strings and application to the provided cost function
C(x). The time complexity is O(q!). We are able to generate the k-th permuta-
tion through a Lehmer code based algorithm. The time complexity to generate
all permutations is O(log2(n!)). Pseudocode is presented in Appendix D. Heap’s
algorithm has ldong been considered the fastest method to generate all permuta-
tions of n elements[75]. Our sub-optimal k-th based permutation scheme allows
for independent generation of permutations across distributed processes achieving
optimal O(n!/P ) work per process. Further this scheme matches the order gener-
ated by our theoretical QAOA encoding.
Nevertheless, since we require a 2dlog2(v!)e state-space generations of the q! permu-
tations are reduced in the asymptotic complexity.
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3.4.2 Generating Ĉ

The cost function operator ÛC is generated by evaluating the provided cost function
for all permutations of q bits resulting in a 2q × 2q diagonal matrix called Ĉ. The
time complexity to build Ĉ is O(q!× Poly(q)) where Poly(q) is the cost-function
itself. For edge-overlap this is O(V 2). There is little need to parallelise the cost
function as it is computationally dominated by the number of bit-string considered.

3.5 Generating ÛB

ÛB is less trivial to simulate. The definition of B̂ given by Equation 1.4.5 can be
re-phrased with respect to matrix elements directly. The operator defines valid
transitions from bit-string to bit-string.

Without mixing restrictions the original definition connects all bit-strings which
differ by a single element. A näıve implementation computes the original B̂ matrix
directly by performing a sequence of Kronecker products. However under this new
observation the generation method becomes trivially distributable. We present
pseudocode in Algorithm 3 which includes the application of walk masks described
by Marsh and Wang [61]. When no masks are applied the generated 2q×2q matrix
matches that defined in Equation 1.4.5 which represents a maximally connected
hypercube between candidate bit-strings.

3.6 Distribution Scheme

The distribution of our simulation is based on the state-vector itself. We initially
consider a scheme where each process is responsible for a unique sub-set of the 2q

elements defined as

nP = b2
q

P
c. (3.6.1)

This decomposes seamlessly where log2(P ) ∈ Z since the state-space grows ex-
ponentially. When this is not true we append the remaining items to the final
process. The number of appended items is defined as

nPend = 2qmodP, (3.6.2)

which by definition grows O(P ). Since P � 2q we deem this acceptable. This
decomposition has the benefit of optimal load balancing between all processes in
the general case. This simple method works well for distributing the state-vector
and realising ÛC however ÛB requires more nuance.
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Algorithm 3 B̂ Generation

1: procedure GenerateB(numQubits, mask)
2: UB ← ∅
3: nnz = 0
4: for i← 0 to 2q do
5: colB[i] ← nnz
6: for j ← 0 to 2q do
7: row ← i ∨ (1 << j)
8: if mask(row) then
9: values[nnz] ← 1

10: colE[i] ← nnz
11: rowInd[nnz] ← col
12: nnz ← nnz + 1
13: end if
14: end for
15: end for
16: end procedure
17: Report()

3.7 Function Evaluation

Function evaluation method realises a single QAOA iteration defined in Equation
1.4.7. The generation of an initial state is in our case an equal superposition of
q qubits. This is represented as a 2q vector of 1√

2q
indicating an equal chance of

measuring any candidate bit-string. The state-vector |ψ〉 is distributed equally
across all processes according to Equation 3.6.1. We describe each part of the
function evaluation separately.

3.7.1 Setup

The root node holds the set of parameters (~γ, ~β) broadcast to all processes. The
communication overhead grows O(p).

3.7.2 Applying ÛC

We need to realise the action
e−iγĈ |ψ〉 . (3.7.1)
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Since Ĉ is a diagonal matrix, we can compute e−iγĈ by exponentiating each element
of Ĉ and apply a point-wise multiplication with |ψ〉 or dot-product with |ψ〉T .
This requires O(2q) operations but is embarrassingly parallel. We make use of
vectorisation and parallelisation afforded by multi-core processors.

3.7.3 Applying ÛB

We need to realise the action
e−iβB̂ |ψ〉 . (3.7.2)

The non-trivial structure of the B̂ matrix requires a sophisticated method to
compute the action of the matrix exponential; a difficult problem withstanding
four decades of continual investigation. We implement the Chebyshev expansion
method similar to pyCTQW [49] and depicted in Equation 3.7.3. This method
requires only matrix-vector operations to realise Equation 3.7.2 without storing
the final exponentiated matrix at any point. In general,

etA = e(λmax+λmin)t/2[J0(α)φ0(Ã) + 2
inf∑
n=1

inJn(α)φn(Ã)], (3.7.3)

where λmax, λmin ∈ C are eigenvalues of A with maximal and minimal real parts.
α = i(λmin − λmax)t/2 and φ(Ã) are the Chebyshev polynomials which computed
recursively as

φ0(Ã) = I, (3.7.4)

φ1(Ã) = Ã, (3.7.5)

φn(Ã) = 2Ãφn−1(Ã)− φn−2(Ã). (3.7.6)

Similar to other approximation methods normalisation of λ ∈ [−1, 1] encourages
minimal convergence time and therefore we scale our matrix

Ã =
2A− (λmax + λmin)I

λmax − λmin
. (3.7.7)

The use of Bessel function zeros as coefficients means that Jn(α) ≈ 0 when n > |α|
and therefore convergence occurs after |α| ∝ t terms. Similar to Izaac and Wang
[49] we terminate after the condition

|2Jn(α) ≤ ε|, (3.7.8)

where ε is chosen to be 10−18.
However, without knowledge of the maximal and minimal eigenvalues we would
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be required to solve for these values, a time-consuming and laborious calculation
for large matrices. Since we are computing the matrix exponential for only a
particular type of matrix (non-negative, Hermitian and symmetric) we find that

λmin,max = ±q. (3.7.9)

A derivation of Equation 3.7.9 is found in Appendix E. Furthermore, the only
downside to over-estimating the range of these eigenvalues is computation time,
not accuracy. In the case of a restricted B̂ matrix the symmetric, Hermitian and
non-negative properties hold and can only have fewer non-zero elements than a
fully connected, canonical B̂ hence our method is appropriate for simulation of the
QAOA.
When considering the decomposition of B̂ among multiple processes we consider
three options. In all cases the total work required is O(n2/p) since all values must
be considered in the multiplication.

Column Distribution

Each process builds and operates upon a section of columns of our overall matrix
governed by Equation 3.6.1. This produces optimal load balancing between all
processors due to the symmetry of B̂. A matrix vector multiplication sees each
process operate upon a subset of the state-vector but produces a full 2q length
vector. These need to be combined across all processes resulting in O(n2/p+n+p)
work. The difficulty here is that after each multiplication each process contains a
full state-vector with 1/p of the total solution which must be reduced and scattered
to all processes in order to continue work. If we consider α as the time for a single
scalar operation, λ as the communication latency and each complex value is 32
bytes long and β as the buffer length of a message the total execution time is given
by

Θ(αndn
p
e+ (p− 1)(λ+

32

pβ
)). (3.7.10)

Moreover the scalability of this scheme is n2p. Since n = 2q this scheme scales
poorly.

Row Distribution

Similarly, we could decompose across rows which again does not alter the distribu-
tion scheme of Ĉ. In this scheme, after a matrix-vector multiplication each process
will hold a separate section of the resultant vector which again needs redistributing
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to all processes through an all-gather operation. The total execution time is given
by

Θ(αndn
p
e+ λdlogpe+

32n

β
). (3.7.11)

We see a similar scalability function of n2p which is again very infeasible but
slightly better.

Checker-board Distribution

We could alternatively decompose B̂ across both rows and columns forming a grid
of processors. The input vector is distributed across the first row of processes
and each subsection is copied down each column. After a vector multiplication
operation the result is then reduced across each row. A process in each row will
contain a separate section of the final state vector prepared for a ÛC operation.
This scheme exhibits a total execution time of

Θ(
αn2

p2
+ λ

32nlogp2√
p2β

), (3.7.12)

if we consider the squared number of processes required to implement this method.
More machines are required however the scalability is much better and is given by
n2log2p2.

3.8 Measurement

After our final QAOA state is prepared |ψ〉 results must be communicated back to
the root process. The näıve method would involve each processor sending its final
discrete component of the state-vector to the root process. This would require
O(2q) communication at the root process. We formulate three schemes for final
state measurement.
The expectation value can be computed in an embarrassingly parallel fashion on
each process and reduced at the root process. This scheme requires O(P ) commu-
nication of a single value.
Aggregating over the state-space and cost-function allows us to reduce the entire
state-vector which grows O(2q) to a smaller distribution of unique cost-function
values which is problem-dependent in size. By definition, the QAOA demands a
polynomial cost function however and for graph simialrity this is O(v2) which is
significantly more feasible.

39



3.9 Optimisation

The well-established nlopt non-linear optimisation library [51] to implement local
and global derivative-free optimisation schemes. This library implements useful
features such as run-time constraints. Notably IBM’s Qiskit [47] utilises this pack-
age and as such Qolab matches the state of the art in functionality. Johnson [51]
provides an explanation of each available method. Initialising multiple processors
to complete independent optimisation on the same problem is a trivial scheme
providing no increase in problem size but increases for evaluation.
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CHAPTER 4

Results

We simultaneously investigate our mapping of graph similarity to the QAOA pro-
viding performance analysis of our Qolab package. Source code is available in
Appendix C, the full set of original data-files, aggregate data and code to gener-
ate all plots is available in Appendix F. The exponential complexity of quantum
state-vector simulation places a unique strain on performance analysis since we
can by definition do no better than O(2q). We provide correctness investigation of
the QAOA up to 19 qubits and performance analysis for 22 qubits. We investigate
eight different classical optimisation schemes.

4.1 Definitions

We consider a number of performance metrics defined below. We cannot present a
standard approximation factor for our problem since the optimal value of our cost
function is zero. We provide alternate correctness measures which illuminate the
same trends.

• Number of Evaluations - We consider an evaluation the generation of a single∣∣∣~γ, ~β〉 state. This measure provides a rough estimate of how many logical

(aptly sampled) quantum states are required. Lower is better.

• Sample Error - We use the expectation value of our system until the last
iteration which samples the resulting state space V 2 times. The best value
observed is compared to the known optimal as a standard approximation
ratio. Higher is better.

• Expectation Error - The difference between the optimal solution and our
expectation value normalised over the minimal possible value to account for
changing graph sizes. Lower is better. A value of zero indicates certain
measurement of the optimal solution
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• Classical Comparison - We compare the final expectation value of our state
with the corresponding expectation value of random solution selection. A
negative value indicates better likelihood of a better solution from the QAOA.
Higher is better

• Expectation Improvement - The net improvement in expectation value from
the state generated by initial parameters. Higher is better.

4.1.1 Methodology

We present results from three datasets:

• An initial set using an old cost function containing 16, 190 trials. This al-
ternate cost function sets the optimal value to zero, sub-optimal solutions
to negative values and pads infeasible solutions with a maximal penalty of
−V 2.

• A set of directed graph results containing 10, 800 trials.

• A set of undirected graph results containing 2500 trials.

In all trials we consider all deformation methods described in Section 3.2.5 equally
and are aggregated together to provide an overall impression of QAOA perfor-
mance.
The classical parameter optimisation component of the QAOA is critical to cor-
rectness and efficiency. Guerreschi and Smelyanskiy [37] provide the most in-depth
analysis to date, we investigate eight different optimisation schemes. We provide
extensive plotting of our results in Appendix F. We explicitly discuss the Nelder-
Mead [65], Subplex [73], BOBYQA [70], Multi-Level Single-Linkage (MLSL) [52]
and Dividing Rectangles (DIRECT) [72] methods. The Subplex algorithm is a
variation on the legendary Nelder-Mead simplex algorithm [65] designed to tar-
get noisy function spaces. Simplex-based algorithms maintain a simplex of n + 1
points to optimise n parameters. The BOBYQA algorithm estimates trust re-
gions by forming quadratic models of the cost function. MLSL maintains a variety
of local optimisations starting from a series of random points using heuristics to
avoid repeated searching of local optima. The DIRECT algorithm is a determin-
istic global search algorithm based on dividing the search space into increasingly
smaller hyper-rectangles.
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Figure 4.1: Expectation error for differing cost functions

4.2 Alternate Cost Function

We see the effect of our ’tail’ values most prominently when considering a slightly
different cost function. Mapping optimal solutions to zero and penalising miss-
ing edges to negative values and mapping non-solution bit-strings to a minimal
value. However, since these values now contribute to our expectation value, the
overall performance is diminished depicted in Figure 4.2. Our final cost function
performs significantly better where error grows significantly slower for all amounts
of decomposition. This trend holds across all optimisation methods tested.

4.3 Increased Decomposition

Figure 4.3 depicts performance metrics for the Nelder-Mead algorithm. We see ex-
cellent performance for this method matching current literature [37]. In Figure 4.3
we see the effect increased decomposition makes despite inferior end-results. We
see that increasing QAOA decomposition results in an almost monotonic improve-
ment in both sampled and expected solution quality at the cost of nearly double
the number of function evaluations required for termination. This generalises to
most optimisation methods tested. This is intuitive since we can always zero out
parameters to provide the performance of a coarser QAOA scheme. The QAOA
suffers from dimensionality issues since each increase in p exponentially increases
the number of possible values requiring more optimisation iterations to make use
of these additional parameters. This is most clearly seen in Figure 4.4(c).
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Figure 4.2: Final performance for the Nelder-Mead algorithm (directed graphs)
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Figure 4.3: Final performance for the BOBYQA algorithm (directed graphs)
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4.4 Optimisation Methods

4.4.1 Correctness

The global nature of both the MLSL and DIRECT algorithms results in generally
superior sampled and expected solutions over local methods. The MLSL algorithm
achieves this by exhausting the maximal number of function evaluations defined
as

MAX = S × P ×GraphSize, (4.4.1)

where S is a scaling parameter (we nominally choose 200, the standard value used
by Scipy. [53]). The DIRECT algorithm terminates significantly earlier than other
methods with a significant degradation in performance. For all algorithms tested
the effect of infeasible solutions results in a lower expectation value versus clas-
sical sampling in the larger test cases indicating either more optimisation time
is required or a more nuanced problem encoding. The cost function for graph
similarity can span a range of V 2 values and produces a cost-function landscape
containing many local optima. The derivative and non-linear nature of the opti-
misation schemes tested results in the scheme terminating at said optima.

4.4.2 Efficiency

There is no clearly superior optimisation method for our mapping of graph sim-
ilarity to the QAOA. Generally, global methods provide more correct solutions
at a cost of vastly more function evaluations whereas local algorithms typically
terminate with fewer iterations but produce poorer results as one would expect.

4.5 Directed vs. Undirected Graphs

We compare the performance of the Subplex algorithm between directed and undi-
rected graphs in Figure 4.5. We see superior solution quality in the undirected
case. This is expected since the mappings of node labellings in the undirected case
generates a cost function landscape spanning fewer unique values resulting in a
’smoother’ cost-function landscape.
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Figure 4.4: Final performance for the MLSL algorithm (directed graphs)
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Figure 4.5: Final performance for the DIRECT algorithm (directed graphs)
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Figure 4.6: Final performance for the Subplex algorithm (undirected graphs)
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Figure 4.7: Threading performance

4.6 Simulation Performance

We plot timing data for four major components of the simulation in Figure 4.6
and relative speed-up for each task in Figure 4.6. We compare the simulation
time of each task with optimal threading in Figure 4.6, we see that the full matrix
exponential dominates the computational workload. Although the work required
by all tasks scales exponentially with graph-size the most intensive task is the
computation of ÛB. This justifies our effort to make this operation efficient and
lack of threading for the simpler tasks. Generating Ĉ and B̂ occurs once in a trial
whereas the ÛC and ÛB operations are performed thousands of times.
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CHAPTER 5

Conclusion

We explore the Quantum Approximate Optimisation Algorithm (QAOA) [31], an
efficient combinatorial optimisation algorithm designed to approach NP-Complete
problems. The low gate-depth, hybrid nature and generality makes the QAOA
a strong candidate for near term implementation and practical use. We explore
the algorithm in a novel manner independent of physical implementation through
bespoke high-performance simulation testing up to 22 qubits. Our Quantum Ap-
proximate Optimisation package provides class-leading flexibility allowing simu-
lation of both the QAOA and derivative algorithms [61] while providing efficient
scaling from desktop to cluster scale. We investigate the use of eight classical op-
timisation schemes seeking insight into any differences in performance offered by
different optimisation paradigms finding a general trade-off between correctness
and efficiency when considering global versus local methods.
We encode the problem of graph similarity to the QAOA by considering the edge-
overlap between two unlabelled vertices for both directed and undirected graphs;
a similarity measure not yet considered classically. We provide a novel encoding
scheme saving O(V ) qubits at the cost of considering infeasible solutions. The
run-time cost of this space saving extends through both the quantum and classical
portions of the algorithm; the former due to the increased gate-depth and circuit
complexity required to encode the problem and the latter due to the non-solutions.
The QAOA is able to optimise out of an initial local minima including the infea-
sible solutions but requires significantly more optimisation to find good solutions.
We investigate an initial starting state of superposition between all qubits testing
the resilience of the QAOA against a significant number of infeasible and undesir-
able solutions.
Run-time restrictions placed on high-performance compute resources make evalu-
ating larger problem instances problematic for continuous simulation of the QAOA;
implementation of a check-point system or multi-start paradigm would allow for
exploration of larger problem instances. Investigation of a wider variety of hard
combinatorial optimisation problems may reveal additional avenues to exploit the
sub-structure of certain problems and further discriminate between classical opti-
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misation schemes. Moreover the formulation of a parameter optimisation schemes
targeted directly for the QAOA may lead to significant performance benefits. Fi-
nally, tighter integration into pre-existing quantum computing resources (both
simulators and physical implementations) will facilitate a more complete investi-
gation of this promising and exotic algorithm.
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APPENDIX A

Original Honours Proposal

Title: Quantum Graph Similarity and Applications

Author: Nicholas Pritchard

Supervisor: Professor Jingbo Wang and Professor Amitava Datta

Degree: BSc(Hons.)

Background

The goal of quantum computing is the exploit the complexity of quantum sys-
tems for useful computation. Such a motivation arises from the fact that despite
decades of research modelling quantum systems in classical computers has alluded
the scientific community [11]. The development of near-term physical hardware
[54], [76] has combined with a surge of interest to apply quantum computing to
numerous fields in computation [15, 29, 10, 20, 21]. Graph similarity and graph-
isomorphism are long-standing difficulties in computer science. Many useful for-
mulations of graph similarity exist such as compound matching in chemistry [40,
41, 71], machine vision [57] and web-search [14]. This problem has no tractable
exact formulation for graphs with unknown node correspondence and as such ap-
proximate solutions are considered industry standard. More specifically we define
whole-graph similarity

Definition A.0.1. Whole Graph Similarity: Given two graphs G1(v1, e1) and
G2(v2, e2) with possibly different numbers of vertices and edges, find an algorithm
which returns a measure of similarity S|S ∈ [0, 1]. Furthermore:

1. S(G1, G1) = 1

2. S(G1, G2) = S(G2, G1)
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Aim

To investigate a quantum algorithmic approach to graph similarity and its applica-
tions this project will examine graph similarity by applying the recently proposed
’Quantum Approximate Optimisation Algorithm’ (QAOA) [29]. The QAOA can
be formulated to reduce a combinatorial optimisation problem to a parameter
search on around two variables. This project primarily aims to investigate if such
an approach leads to any improvements in speed, accuracy or robustness over clas-
sical methods.
A secondary objective is to extend the generated model of graph similarity into a
real-world contextual use such as object tracking or common sub-graph matching
for example. Currently it is unknown whether a quantum advantage will yield any
benefits in speed, accuracy or robustness over classical counter-parts and hence
makes a suitable topic for research.

Method

There will be a large amount of theoretical work in the development and vali-
dation of a quantum or hybrid quantum/classical algorithms to tackle the prob-
lem of graph similarity. Testing will require a series of standardised sources as
well as comparison results or implementations of classical algorithms. Due to
the compute-heavy nature of simulating quantum systems it is likely the Magnus
supercomputer at the Pawsey Super-computing Centre will need to be utilised.
Python, C/C++ and possibly Fortran will be used to simulate various approaches
and to create visualisations of resulting circuit designs.

Status

This project does not follow from previous work commencing at the start of the
2018 academic year. This research is a collaboration between the Quantum dy-
namics and computation research group and the department of Computer science
and software engineering.
Currently, a general understanding of quantum computing and potential object
detection methods are being investigated in addition to classical object-tracking
frameworks with the aim of finding a suitable starting point to apply quantum
methods. An investigation into state-of-the-art quantum simulations yields a num-
ber of possible methods and frameworks [81, 69, 12, 17, 16]. Preliminary-work on
simulating the Quantum Approximate Optimisation Algorithm (QAOA) locally is
underway.
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Software and Hardware Requirements

Costs are expected to be negligible as access to required software packages are
openly available on-line or through the University of Western Australia. The ma-
jority of testing is to be run on personal machines. Use of the Pawsey Supercom-
puting Centre is available if needed based on an agreement with the University.
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APPENDIX B

Tail Complexity

Vertices (V ) V ! Qubits (q) 2q Difference(2q − V !) 2q/V !
2 2 1 2 0 0
4 6 5 32 26 4.3
8 40320 16 65536 25216 0.65
10 3628800 22 4194304 565504 0.15
12 479001600 29 536870912 57869312 0.12
15 1.30767E12 41 2.19902E12 8.91349E11 0.68
22 1.124E21 70 1.18059E21 5.65909E19 0.05

Table B.1: Graph-size compared to qubit state-space

B.1 Series Expansion at n =∞

2log2(n!)(

√
1
n√

2π
+O((

1

n
)3/2))exp((1− log(n))n+O((

1

n
)2))− 1 (B.1.1)
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APPENDIX C

Description of Qolab

Qolab is a near problem agnostic simulation of the QAOA [31] with extended
constraint ability [61]. Implementation using Intel’s Math Kernel Library [48] fa-
cilitates maximal desktop and single node performance. The open-source nlopt
optimisation suite [51] allows for a variety of optimisation algorithms to be tested
simply. Qolab supports cluster execution allowing exacting state-space decompo-
sition. Code is available at

https://bitbucket.org/qaoa_uwa/graphsimilarity/src/master/

Currently, Qolab supports the following arguments:

• Arbitrary number of qubits

• Arbitrary cost function

• Mixing masks on the ÛB operator with an alternate function evaluation path
as per Algorithm 5 proposed by Marsh and Wang [61].

• Arbitary trotterisation depth (p variable)

• Confidence interval based sampling scaling

• Arbitrary sampling

• Command line support for nlopt optimisation selection

• QAOA (~γ, ~β) argument optimisation tolerances

• Variable function output tolerance selection

• Full-desktop and cluster implementations
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APPENDIX D

Pseudocode

D.1 Lehmer Code Permutation

Algorithm 4 Factoradic Permutation Generator

1: procedure k Perm(n, k)
2: facts[]← ∅
3: items[]← 0, . . . , n
4: out[]← ∅
5: nnz ← 0
6: size ← n
7: while size > 0 do
8: f ←factorial(size−1)
9: i← k/f

10: x←items[k]
11: k ← kmodf
12: out[nnz] ← x
13: for j = 0 to n - 1 do
14: items[j] ← items[j+1]
15: end for
16: size ← size - 1
17: nnz ← nnz + 1
18: end while
19: Return out
20: end procedure

This procedure returns the k-th permutation of natural numbers [0, . . . , n)
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Algorithm 5 NPO QAOA Overview

1: procedure NPO QAOA Core(numQubits, P, optimisationMethod, C(x),
Mask(x))

2: ÛC ←genUC(C(x))
3: ÛB ←genUB(numQubits, Mask(x))

4: ~γ, ~β ←initialParameters()
5: while terminateTest() do
6: |ψ〉 ←initialState
7: for i = 0 to p do
8: |ψ〉 ← ÛB(βi) |ψ〉
9: |ψ〉 ← ÛC(γi) |ψ〉

10: end for
11: |ψ〉 ← ÛB(βp+1) |ψ〉
12: Fp ←Measure(ψ)

13: ~γ, ~β ← updateParameters(Fp)
14: end while
15: end procedure
16: Report()

D.2 NPO QAOA

Note the subtle differences to the QAOA in Algorithm 5, an additional ÛB oper-
ation is applied at the start and a validation mask is passed to the B̂ generation
routine.
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APPENDIX E

Proofs

We rely on the Perron-Frobenius theroem which states

Theorem 1. A symmetric elements of only real, non-negative entries has all real
non-negative eigenvalues. Furthermore there exists a Perron-Root r for which all
other eigenvalues λ ≤ r.

We show λmin,max = ±q. Let B be our 2q × 2q hypercube adjacency matrix con-
structed according to

B̂ =
n∑
i=1

σxi (E.0.1)

We note that B is Hermitian and therefore symmetric and by definition contains
real values. We shall show that there exists and eigenvalue λ of B such that for
any vector v ∈ Rn we have

v ·Bv ≤ λ‖v‖2 (E.0.2)

For a real symmetric matrix, there exist eigenvectors v1,v2, . . .vn corresponding
to λ1, λ2, . . . λn such that

E = v1,v2 . . .vn (E.0.3)

forms an orthonormal basis of Rn. Equivalently, every real symmetric matrix is
diagonalisable by an orthogonal matrix. If this were not the case, this operator
would be impossible to implement in a quantum computer since all operations
must be unitary in nature.
Let v be any vector in Rn

Since E is a basis of Rn we can write

v = c1v1 + c2v2 + · · ·+ cnvn (E.0.4)

Where c1 . . . cn ∈ R We then calculate Bv as

Bv = B(c1v1 + · · ·+ cnvn (E.0.5)

= c1Bv1 + · · ·+ cnvn (E.0.6)

= c1λ1v1 + · · ·+ cnλnvn (E.0.7)
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Knowing Bvi = λivi for i = 1, . . . , n We can then apply another v

v ·Bv = (c1v1 + · · ·+ cnvn) · (c1λ1v1 + · · ·+ cnλnvn) (E.0.8)

= c21λ1 + · · ·+ c2nλn (E.0.9)

Using the facto that E is an orthonormal basis of R3

Since λ is the largest eigenvalue of B we show

v ·Bv = c21λ1 + · · ·+ c2nλn (E.0.10)

≤ c21λ+ · · ·+ c2nλ (E.0.11)

= λ(c22 + · · ·+ c2n) (E.0.12)

= λ‖v‖2. (E.0.13)

We finally make the observation that for any B̂ according to Equation 1.4.5 will
have at most q elements in each row. When considering a positive v, λ = q and
for a negative v, λ = −q
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APPENDIX F

Data

All source data files, plots, csv aggregates and the code used to generate them are
available at

https://bitbucket.org/qaoa_uwa/results/src/master/

We present the remaining plots for all optimisation methods considered.‘
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Figure F.1: Final performance metrics for the ISRES algorithm (global) (directed
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73



4 5 6 7 8
Graph Size

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Qu
an

tu
m

 / 
Cl

as
sic

 E
xp

ec
ta

tio
n

Quantum/Classical Expectation vs. Graph Size:
BOBYQA

P = 1
P = 2
P = 3
P = 4
P = 5
P = 6

# Trials = 150

4 5 6 7 8
Graph Size

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Ap
pr

ox
im

at
io

n 
Ra

tio

Error vs. Graph Size:
BOBYQA

P = 1
P = 2
P = 3
P = 4
P = 5
P = 6

# Trials = 150

(a) Expectation value comparison (b) Solution error

4 5 6 7 8
Graph Size

0

1000

2000

3000

4000

Av
er

ag
e 

#E
va

lu
at

io
ns

# Evaluations vs. Graph Size:
BOBYQA

P = 1
P = 2
P = 3
P = 4
P = 5
P = 6

# Trials = 150
4 5 6 7 8

Graph Size

0

2

4

6

8

10

12

Ne
t E

xp
ec

ta
tio

n 
Va

lu
e 

Ga
in

Expectation Improvement vs. Graph Size:
BOBYQA

P = 1
P = 2
P = 3
P = 4
P = 5
P = 6

# Trials = 150

(c) Function evaluations required (d) Improvement
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rected graphs)

74



4 5 6 7 8
Graph Size

0.3

0.2

0.1

0.0

0.1

0.2

Qu
an

tu
m

 / 
Cl

as
sic

 E
xp

ec
ta

tio
n

Quantum/Classical Expectation vs. Graph Size:
COBYLA

P = 1
P = 2
P = 3
P = 4
P = 5
P = 6

# Trials = 115

4 5 6 7 8
Graph Size

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Ap
pr

ox
im

at
io

n 
Ra

tio

Error vs. Graph Size:
COBYLA

P = 1
P = 2
P = 3
P = 4
P = 5
P = 6

# Trials = 115

(a) Expectation value comparison (b) Solution error

4 5 6 7 8
Graph Size

0

100000

200000

300000

400000

500000

600000

700000

Av
er

ag
e 

#E
va

lu
at

io
ns

# Evaluations vs. Graph Size:
COBYLA

P = 1
P = 2
P = 3
P = 4
P = 5
P = 6

# Trials = 115
4 5 6 7 8

Graph Size

2

4

6

8

Ne
t E

xp
ec

ta
tio

n 
Va

lu
e 

Ga
in

Expectation Improvement vs. Graph Size:
COBYLA

P = 1
P = 2
P = 3
P = 4
P = 5
P = 6

# Trials = 115

(c) Function evaluations required (d) Improvement

Figure F.3: Final performance metrics for the COBYLA algorithm (directed
graphs)
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Figure F.4: Final performance metrics for the PRAXIS algorithm (local) (directed
graphs)
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